Continuum Limits of the Becker-Döring Equations

Thomas Staudt

Georg-August University Göttingen Max-Planck Institute for Dynamics and Self-Organization

2016/08/17

\( ~\)

Overview

Lifshitz-Slyozov-Wagner Theory

Ostwald Ripening

picture showing ripening

Lifshitz-Slyozov-Wagner Theory

The LSW Model

$$\partial_t n(v, t) = \partial_v \big(\dot{v}(t)\,n(v, t)\big)$$ $$\dot{v}(t) = \frac{v^{1/3}}{r^\mathrm{c}(t)} - 1$$

$$0 = \frac{\mathrm{d}}{\mathrm{d} t}V_0 = \int_0^\infty \!\!\!\!\!v~\partial_t n(v, t)\,\mathrm{d}v \quad~ \Longrightarrow\quad~ \quad $$ $$ r^\mathrm{c} = \langle r \rangle $$

Lifshitz-Slyozov-Wagner Theory

LSW Predictions

$$ \begin{aligned} N_t &\sim t^{-1} \\ \langle r \rangle, \sigma(r) &\sim t^{1/3} \end{aligned} $$

picture showing lsw-solution

\(\rho = r / \langle r \rangle\)

\(F(\rho) = 1 - \frac{\exp{\rho / (\frac{3}{2} - \rho)}}{\big(1 - \frac{2}{3}\rho\big)^{5/3}~\big(1 + \frac{1}{3}\rho\big)^{4/3}}\)

Lifshitz-Slyozov-Wagner Theory

Other Solutions and Selection Rules

picture showing lsw-solution

Lifshitz-Slyozov-Wagner Theory

Emerging Questions

Continuum Limits of the Becker-Döring Theory

The Becker-Döring Model

picture showing becker döring idea and notation

\(~~ c_1 + c_l \rightleftharpoons c_{l+1}\,,\qquad\footnotesize l\in\mathbb{N}\)

\(~\)

\(c_l\): \(~\)Concentrations

\(a_l\): \(~\)Coagulation rates

\(b_l\): \(~\)Fragmentation rates

\(\scriptsize a_l\)

\(\scriptsize b_l\)

Continuum Limits of the Becker-Döring Theory

Deterministic Description

Concentrations

\(~~~c_l\), \(z := c_1\)

Net currents

\(~~~J_l = a_l\,c_l\,z - b_{l+1}\,c_{l+1}\)

\(\qquad\qquad~~~~ c_1+c_l\rightleftharpoons c_{l+1}\)

Density

\(~~~\rho = \sum_{l=1}^{\infty} l\,c_l \)

\(~\)

EOM

\(~\)

\(~~~\begin{aligned}\dot{c}_l &= -J_l + J_{l-1} \qquad\qquad\qquad\quad~~~\text{(for} \quad l > 1 \text{)}\\ \dot{z} &= \dot{\rho} - 2\,J_1 - \sum_{l=2}^\infty J_l \end{aligned}\)

\(~\)

Case A

\(~~~z ~ \) constant \(\quad\qquad\)

chemostated

Case B

\(~~~\rho ~\) constant \(\quad\qquad\)

closed

Case C

\(~~~\rho(t) = \rho_0 + \xi\,t\)

monomer influx, drift

\(\scriptsize a_l\)

\(\scriptsize b_l\)

Continuum Limits of the Becker-Döring Theory

Basic Properties

Equilibrium:

\(~~~ c^{\mathrm{eq}}_l(z) = Q_l\,z^l,\)

\(~~~~~Q_l = \frac{a_{l-1} \cdot \,\ldots\, \cdot a_1}{b_l \cdot \,\ldots\, \cdot b_2} \quad\) (case A,B)

Critical density:

\(~~~ \rho_c := \sum_{l=1}^\infty l\,Q_l\,z_c^l,\)

\(~~~~~z_c~\) convergence radius

\( ~ \)

Continuum Limits of the Becker-Döring Theory

Monomer Influx

Continuum Limits of the Becker-Döring Theory

Towards the Continuum

\( x \)

\( = \)

\( \epsilon\,l \)

\( \qquad \)

\(\tau \)

\( = \)

\( \epsilon\,t\)

\( \alpha(x) \)

\( = \)

\( a_l \)

\( \qquad \)

\( \beta(x) \)

\( = \)

\( b_l \)

\( n(x, \tau) \)

\( = \)

\( c_l(t) / \epsilon^2 \)

\( \qquad \)

\( I(x, \tau) \)

\( = \)

\( J_l(t) / \epsilon^2 \)

\(\epsilon:~\) scaling parameter

Density

\( ~~~~ \rho\)

\(~=~\)

\( \epsilon \,\sum_{l=1}^\infty x\,n \) \(~ =~ \) \( \int_0^\infty x\, n\,\mathrm{d}x \) \(\,+ O(\epsilon) \) \( \quad \big(\approx V \big) \)

\(~\)

Current

\( ~~~~ I \)

\(~=~\)

\(\big( \alpha\, n\,z - \beta\,n\big) - \big(\beta(x+\epsilon)\,n(x+\epsilon) - \beta(x)\,n(x)\big) \)

\(~\)

\( ~\)

\(~=~\)

\(\big(\alpha\,z - \beta\big)\,n\) \(\,- \epsilon\,\partial_x (\beta\,n)\) \(\,+ O\big(\epsilon^2\big) \)

\(~\)

EOM

\( ~~~~ \partial_\tau n \)

\(~=~\)

\(\frac{I(x - \epsilon) - I(x)}{\epsilon}~=\,\) \(- \partial_x I\) \(~~+ ~~ O(\epsilon) \)

Continuum Limits of the Becker-Döring Theory

Continuum Limits

Density

\( ~~~~ \rho\)

\(~=~\)

\( \int_0^\infty x\, n(x, \tau)\,\mathrm{d}x \)

\(~~ +~~ O(\epsilon) \)

Current

\( ~~~~ I \)

\(~=~\)

\(\big(\alpha\,z - \beta\big)\,n \)

\(~~ +~~ O\big(\epsilon\big) \)

EOM

\( ~~~~ \partial_\tau n \)

\(~=~\)

\(- \partial_x I\)

\(~~+ ~~ O(\epsilon) \)

\(~\)

Choice of coefficients

\(~~~~a_l = a_1 \, l^{1/3}\),

\(~~~~b_l = a_1\,(z_s\,l^{1/3} + q)\)

\(~\)

First order CL

\(~~~~t := a_1\,q~\tau\),

\(~~~~r_c(t) := q\,\epsilon^{1/3} / \big(z(t) - z_s\big) \)

\(~\)

\( \partial_t n \)

\(=\)

\( - \partial_x \big( ( x^{1/3} / r^c - 1)~n\big) \)

\( V(t) \)

\(=\)

\( \int_0^\infty x\, n(x, t)\,\mathrm{d}x \)

Continuum Limits of the Becker-Döring Theory

Continuum Limits: Cases

\( \partial_t n \)

\(=\)

\( - \partial_x \big( ( x^{1/3} / r^c - 1)~n\big) \)

\( V(t) \)

\(=\)

\( \int_0^\infty x\, n(x, t)\,\mathrm{d}x \)

Case A

\(~~~~ z ~~\text{constant} \quad\Longrightarrow \quad r^c = q\,\epsilon^{1/3}/ (z - z_s) ~~\text{constant}\)

\(~\)

\(~~~~\)EOM analytically solvable

\(~\)

Case B

\(~~~~V ~~\text{constant} \quad\Longrightarrow \quad r^c = \langle r \rangle \)

\(~\)

\(~~~~\)LSW model recovered

\(~\)

Case C

\(~~~~V(t) = V_0 + \xi\,t \quad \Longrightarrow \quad r^c = \langle r \rangle / k ~~\) with \(~~ k = 1 + \xi/N \)

\(~\)

\(~~~~\)Ripening model with drift

Continuum Limits of the Becker-Döring Theory

Observations and Remarks

\( ~ \)

Discussion of the Continuum Limits

\(~\)

\(~\)

\(~\)

  • Analytical treatment of model A
  • Properties of model C

Discussion of the Continuum Limits

Chemostated System: Method of Characteristics

EOM

\(\quad \partial_t n = - \partial_x\big( (x^{1/3}/r^c - 1)\, n \big)\)

\(\quad~~ r^c~~\text{constant} \)

Reduced radius

\(\quad \rho := x^{1/3}/r^c ~~\Leftrightarrow ~~ x = (r^c\rho)^3 \)

\(\quad~~\frac{\mathrm{d}\,x}{\mathrm{d}\,\rho} = 3\,(r^c)^3\,\rho^2\)

\(~\)

Change of variables

\(\quad\)\(n^\rho(\rho):=\frac{\mathrm{d}\,x}{\mathrm{d}\,\rho}\,n(x)\)

\(\quad~~\hat{t} := 3\,(r^c)^3~t\)

\(~\)

Method of characteristics

\(\partial_{\hat{t}} n^\rho\)

\(=\)

\( - \partial_\rho \big( \frac{\rho - 1}{\rho^2}\, n^\rho \big)\)

\(\qquad f := \frac{\rho - 1}{\rho^2}\,n^\rho\)

\(\partial_{\hat{t}} f\)

\(=\)

\( - \partial_{\hat{\rho}} f\)

\(\qquad\hat{\rho}(\rho) : ~\frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\rho}= \frac{\rho - 1}{\rho^2}\)

\(f(\hat{\rho}, \hat{t})\)

\(=\)

\(f(\hat{\rho} - \hat{t})\)

Discussion of the Continuum Limits

Chemostated System: Solutions

For given \( n_0(\rho) \) find \( f \) with

\( f( \hat{\rho} ) = \frac{\rho-1}{\rho^2}\,n_0(\rho) \)

\(~\)

Then the solutions are

\( n(\rho, t) = \frac{\rho^2}{\rho - 1}\,f\big(\hat{\rho} - \hat{t}\big) \)

\(~\)

For large times

\( \langle r \rangle\)

\(\sim\)

\(~t^{1/2} \)

\(~\)

\( \langle r^n \rangle~\)

\(\sim\)

\(~\int (y + t)^{n/2}\,f(y)\,\mathrm{d}y \)

\( N \)

\(\sim\)

\(~t^0 \)

Discussion of the Continuum Limits

\(~\)

\(~\)

\(~\)

  • Analytical treatment of model A
  • Properties of model C

Discussion of the Continuum Limits

Ripening with Drift: Overview

EOM

\(\quad \partial_t n = - \partial_x\big( (x^{1/3}/r^c - 1)\, n \big)\)

\(\quad~~ r^c = \langle r \rangle / k, \) \(~~ k = 1 + \xi/N\)

Vollmer, Papke, Rohloff (2014):

  • \( k\) always ends up larger than \(3/2\)
  • Droplet number \(N\) approaches finite value
  • Monodispersity emerges: \( \quad \sigma(r) / \langle r \rangle \longrightarrow 0 \)

Discussion of the Continuum Limits

Ripening with Drift: High Growth Rates

Analytics

\(~~~~\)Convergence of cdf of \(~~I(r) = \big(r^2 - \langle r^2\rangle\big) / \langle r \rangle^{1/(k-1)} \)

Simulations

\(~~~~\)This cdf is even constant for high \(k\)

Discussion of the Continuum Limits

Ripening with Drift: Small Growth Rates

Discussion of the Continuum Limits

Dependence of \(\rho\) on \(k\)

Reduced radius EOM

\( \quad\dot{\rho} ~\) \(=\) \(~\frac{\mathrm{d}}{\mathrm{d}t}\,\frac{r}{\langle r \rangle}\) \(~\) \(\approx~\) \(\frac{-3}{\langle r \rangle^3}~\frac{(\alpha\,k - \beta)\,\rho^3 - k\,\rho + 1}{\rho^2} \)

\(~\)

Critical \(k\)

\(~~~~\)Solutions diverge if \(~~k \approx k_{\mathrm{crit}}\approx 1.1\)

Critical time

\(~~~~k_{\mathrm{crit}} - 1 \sim \xi/N_{\mathrm{crit}} \sim \big(k_0 - 1\big)\,t_\mathrm{crit}\)

\(~\)

Discussion of the Continuum Limits

Conclusion / Recap

A

B

C

\( z\) constant

\(\quad\)\( V\) constant

\(\quad\) drift \( \xi \) in \( V \)

\( \langle r \rangle \sim t^{1/2}\)

\(\quad\)\( \langle r \rangle \sim t^{1/3} \)

\(\quad\) \( \langle r \rangle \sim t^{1/3} \)

\( \sigma(r) \sim t^{0}\)

\(\quad\) \( \sigma(r) \sim t^{1/3} \)

\(\quad\) \( \sigma(r) \sim t^{\frac{1}{3}\,\big(1/(k-1) - 1\big)} \)

References

\(~\)

Lifshitz, Slyozov

The Kinetics of Precipitation from Supersaturated Solid Solutions (1961)

Wagner

Theorie der Alterung von Niederschlägen durch Umlösen (1961)

Niethammer, Pego

Non-Self-Similar Behavior in the LSW Theory of Ostwald Ripening (1998)

\(~\)

Becker, Döring

Kinetische Behandlung der Keimbildung in übersättigten Dämpfen (1935)

Ball, Carr, Penrose

The Becker-Döring Cluster Equations (1986)

Penrose

The Becker-Döring Equations at Large Times and their Connection with the LSW Theory of Coarsening (1997)

\(~\)

Vollmer, Papke, Rohloff

Ripening and Focusing of Aggregate Size Distributions with Overall Volume Growth (2014)

SpaceForward
Right, Down, Page DownNext slide
Left, Up, Page UpPrevious slide
POpen presenter console
HToggle this help