On CTRWs and Fractional Fokker-Planck-Equations

Thomas Staudt

Seminar on the Maths of Randomness in Biology, Georg-August University Göttingen

2017/01/18

Appetizer: Anomal Diffusion

MMMMMMMMMMMMMMMM\(\langle x^2\rangle \sim {D}_\alpha t^\alpha\)

MMMMMMMMMMMi Diffusion MMMMMMM

Subdiffusion MMMMMM

MMMMMMMMMMMii \(\alpha = 1\)

M \(\alpha < 1\)

\( ~\)

Overview

\( ~\)

MMMMM The Tools:

Fractional Integrals and Derivatives

MMMMMMMMMMMMM

MMMMM The Dynamics:M

Continuous-Time Random Walks (CTRWs)

\( ~\)

MMMMM The Limit:

Fractional Fokker-Planck Equations (FFPEs)

\( ~\)

\( ~\)

\( ~\)

\( ~\)

MMMMMMMMMM Fractional Integrals and Derivatives

Fractional Integrals and Derivatives

Who Would Think of "Fractional Derivatives"?!

Fractional Integrals and Derivatives

Iterated Integration is the Key

Cauchy's formula for iterated integration

MMMM\(~ {}_aI^n f(x)\)

\(= \int_a^x dx_1 \int_a^{x_1} dx_2 \cdots \int_a^{x_{n-1}} dx_n \,f(x_n)\)

\(~\)

\(= \frac{1}{(n-1)!}\,\int_a^x (x - y)^{n-1} f(y) \, dy\)

\(~\)

Replace \(n \in \mathbb{N}\) with \(\alpha > 0\)

MMMM\(~ {}_aI^\alpha f(x)\)

\(:= \frac{1}{\Gamma(\alpha)}\int_a^x (x - y)^{\alpha-1} f(y) \, dy\)

with the Gamma function \(\quad\Gamma(\alpha) = \int_0^\infty e^{-x}x^{\alpha - 1} \,dx\)

Fractional Integrals and Derivatives

Fractional Derivatives

Define \(~ {}^{}_aD^{n-\alpha}_x f(x) = \frac{d^n}{dx^n}\, {}_aI^\alpha f(x)\), \(~ 0 \le \alpha < 1 ~\)

  • Weyl (\(a = -\infty\))
  • Riemann-Liouville (\(a = 0\))

\(~ {}^{}_0D^{n-\alpha}_x f(x)\)

\(= \frac{d^n}{dx^n}\, \int_0^x (x - y)^{\alpha-1} f(y)\, dy\)

\(~\)

Grünwald-Letnikov representation

\({}^{}_aD^{n-\alpha}_x f(x)\)

\(= \lim_{N\to\infty}\left[\left(\frac{N}{x -a}\right)^\alpha\sum_{j=0}^N \frac{(-1)^j\Gamma(\alpha + 1)}{\Gamma(\alpha - j + 1)j!}f\!\left(x - j \frac{x - a}{N}\right)\right]\)

Fractional Integrals and Derivatives

"Fractional Exponentials": Mittag-Leffler-Functions

Fractional analogon to exponentials: Mittag-Leffler functions

MMMMMMMMM\({E}_\alpha(y)\)

\(:= \sum_{k=0}^{\infty} \frac{y^k}{\Gamma(k\alpha + 1)}\)

\(~\)

The fractional differential equation

MMMMMMMMM\(-b\,\frac{d}{dx} f(x)\)

\(= \,{}^{}_0D^{1-\alpha}_x f(x)\)

is solved by

MMMMMMMMM\(f(x)\)

\(= {E}_\alpha(-x^\alpha / b)\)

Fractional Integrals and Derivatives

Nonlocal Dynamics -- How is this Physics?

\(~\)

Fractional time derivatives:

  • dynamics with memory
  • respects causality

\(~\)

Fractional spatial derivatives:

  • fundamental problem: action at distance
  • decoupling system from environment hard or impossible
  • phenomenological models / non-inertial dynamics

\( ~\)

\( ~\)

\( ~\)

\( ~\)

MMMMMMMM Continuous-Time Random Walks (CTRWs)

Continuous-Time Random Walks

Definition

Look at random walker

Position

\( x(t) = \sum_{i}^{N(t)} y_i \)

Number of steps MM

\( N(t) ~\) until time \(~t\)

Single Jumps

\( y_i ~\) with pdf \(~\lambda(y)\)

Waiting times

\( \tau_i ~\) with pdf \(~\omega(\tau)\)

For CTRWs: \(~y_i, \tau_i ~\) independent

# Simulate CTRW with N steps
waiting_times = draw_from_lambda(N)
jumps = draw_from_omega(N)

t = cumsum(waiting_times)
x = cumsum(jumps)

Continuous-Time Random Walks

Should I Wait or Rather Fly?

Basic classification of CTRWs

MMM

\(~\langle y_i^2 \rangle\) MM

\(~\langle \tau_i \rangle\)

MMMMMMM e.g.

Normal diffusion M

\(< \infty\)

\(< \infty\)

MMM\(~\omega(t) \sim \exp(-t)~\,\) (exponential)

Subdiffusion

\(< \infty\)

\(= \infty\)

MMM\(~\omega(t) \sim t^{-1-\alpha}~\) Mi (power-law)

Levy Flights

\(= \infty\)

\(< \infty\)

MMM\(~\lambda(y) \sim \frac{1}{1 + y^2}~\) Mxl (Cauchy)

picture showing msdspicture showing msds

Continuous-Time Random Walks

Memory and Aging

CTRWs are usually not Markovian

  • Markovian only if \(\tau_i\) exponentially distributed
  • Then CTRW is a MCCT (Markov Chain in Continuous Time)

\(~\)

Non-exponential CTRWs memorize when they last jumped

  • \(x(t)\) alone does not condition \(x(t+s)\), but \(x(t)\) + time waited already (renewal process)
  • \( P(\tau_i > a + b \,|\, \tau_i > b) \neq P(\tau_i > a) \) \(~\Leftrightarrow~\) \(\tau_i\) not memoryless
  • For subdiffusion: The jumping rates decline with time, as particles that already waited long are expected to wait even longer (aging)

Continuous-Time Random Walks

Properties

Properties for large \(t\) in the normal and subdiffusive case

M

normal MM

subdiffusive

Average jumps MM

\(\langle N(t)\rangle\)

\(t\)

\(t^\alpha\)

Jump rate

\(k(t) = \frac{d}{dt}\langle N(t)\rangle\)

const

\(t^{\alpha-1}\)

Spatial MSD

\(\langle x^2 \rangle = \langle y^2 \rangle \langle N(t) \rangle\) MM

\(t\)

\(t^\alpha\)

M

Temporal MSD

\(\overline{x^2}\)

\(t\)

\(t~ {}^{*}\)

Stationarity

yes

no

Ergodicity

yes

no

\({}^{*}\) Different constants of proportionality of different realizations

Continuous-Time Random Walks

Propagator

The general solution \(P(x, t)\) is best expressed in Fourier-Laplace space (\(k,s)\)

\(\qquad P(k, s) = \frac{1 - \omega(s)}{s} \frac{1}{1-\lambda(k)\omega(s)}\qquad\) Montroll-Weiss-Formula

\( ~\)

This is equivalent to

\( \!\!\!\!\!\partial_t P(x, t) = \partial_t\int_0^t dt'\, M(t - t') \int dx'\, P(x', t')\, [\lambda(x - x') - \delta(x - x')] \)

with memory kernel

\( \quad M(s) = \frac{\omega(s)}{1 - \omega(s)} \quad \Longleftrightarrow \quad M(t) \sim \begin{cases} t^{\alpha-1} \quad \text{if}~\omega(t) \sim t^{-\alpha - 1}\\ 1 ~~\,~~\quad \,\text{if}~\omega(t) \sim \exp(-t) \end{cases}\)

Continuous-Time Random Walks

Remarks

CTRWs are models to describe

  • normal diffusion if \(\langle \tau_i \rangle < \infty\), \(\langle y_i^2 \rangle < \infty~~~\) (weak memory, CLT)
  • subdiffusive behaviour if \(\langle \tau_i \rangle = \infty~~~\) (trapping mechanism, aging)
  • Levi-flights if \(\langle y_i^2 \rangle = \infty~~~\) (spontaneous large jumps)

\( ~\)

CTRWs are not well suited to

  • model interaction with external fields
  • boundary value problems

\( ~\)

\( ~\)

\( ~\)

\( ~\)

MMMMMMMMM Fractional Fokker-Planck Equations (FFPEs)

Fractional Fokker-Planck Equations

From CTRWs to FFPEs

Approximate the density P(x', t') to second order, then the Montroll-Weiss formula in \((x, t)\) space becomes

\( \partial_t P(x, t) = \partial_t \,\int_0^t \,M(t - t')\,[A\,\partial_x P(x, t') + B\, \partial_x^2 P(x, t')] \)

\( ~\)

If \(\alpha = 1\) then \(M(t) = \text{const}\) and

\( \partial_t P(x, t) = A\,\partial_x P(x, t) + B\, \partial_x^2 P(x, t) \quad\qquad\qquad\) (FPE)

\( ~\)

If \(\alpha < 1\) then \(M(t) \sim t^{\alpha - 1}\) and

\( \partial_t P(x, t) = {}_0D^{1-\alpha}_t [A\,\partial_x P(x, t) + B\, \partial_x^2 P(x, t)] ,\qquad\) (FFPE)

Fractional Fokker-Planck Equations

General FFPEs

Under general physical conditions, the FFPE is given by

\( \qquad \qquad\partial_t P = {}_0D_t^{1 - \alpha}\,\left( \partial_x \frac{V'(x)}{m\eta_\alpha} + {K}_\alpha\partial^2_x\right)\,P \)

where

\(m\)

Particle mass

\(\eta_\alpha\)

Generalized friction constant

\({K}_\alpha\)

Generalized diffusion constant

\( ~ \)

Moments:

\( \qquad \frac{d}{dt} \langle x^n\rangle = {}_0{D}^\alpha_t \left( -\frac{n}{m\eta_\alpha}\,\langle x^{n-1}\,V'\rangle + n(n-1)\,{K}_\alpha\,\langle x^{n-2} \rangle \right) \)

Fractional Fokker-Planck Equations

Free and Harmonic Fractional Particles

\( ~ \)

Free particle (leads to Fractional Diffusion Equation, FDE)

\( \qquad \qquad\partial_t P = {K}_\alpha~ {}_0D_t^{1 - \alpha}\,\partial^2_x\,P \quad \Longrightarrow \quad \langle x^2 \rangle \sim {K}_\alpha t^\alpha \)

\( ~ \)

Harmonic Potential \( V(x) = m\omega^2x^2/2\)

\( \qquad \qquad \langle x \rangle = {E}_\alpha(- \omega^2 t^\alpha/\eta_\alpha) \)

\( \qquad \qquad \langle x^2 \rangle = {x}_\text{th}^2 + ( {x}_0^2 - {x}_\text{th}^2)\, {E}_\alpha(- 2 \omega^2 / \eta_\alpha t^\alpha) \)

with thermal equilibrium \( x^2_\text{th} = {k}_\text{B}T/ m\omega^2 \)

Fractional Fokker-Planck Equations

Stationary State and Generalized Einstein Relations

Similar to standard FPE, the stationary solution is

\(\qquad \qquad \qquad \qquad {P}_\text{st}(x) \sim \exp\left( - \frac{V(x)}{m \eta_\alpha {K}_\alpha} \right) \)

\( ~\)

Comparing with Bolzmann distribution reveals

\(\quad~~ \qquad {K}_\alpha = {k}_\text{B} T / m \eta_\alpha \qquad\) (generalized Einstein Relation)

\( ~\)

By a linear response approach, one can also show

\(\quad \qquad \langle x \rangle_F = \frac{1}{2} \frac{F}{{k}_\text{B}T} \langle x^2 \rangle\qquad\) (generalized second Einstein Relation)

for a constant force \(F\)

Conclusion

This week:

  • CTRWs are versatile mathematical models to describe anomal diffusion
  • Remarkable features: Aging, non-stationary, non-ergodic for \(\alpha < 1\)
  • There is a close relation between CTRWs and FFPEs
  • For the FFPE similar properties to the original FPE can be derived

\( ~ \)

Next week:

  • Other models to describe subdiffusion, with different properties
  • Methods of how to distinguish between different Mechanism driving anomal diffusion

\( ~ \)

\( ~ \)

\( ~ \)

Klafter, Sokolov

First Steps in Random Walks: From Tools to Applications (2011)

Metzler, Klafter

The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach (2000)

\( ~ \)

Barkai, Metzler, Klafter

From Continuous Time Random Walks to The Fractional Fokker-Planck Equation (2000)

Meroz, Sokolov

A Toolbox for Determining subdiffusive Mechanisms (2015)

Magdziarz, Weron

Fractional Brownian Motion versus the Continuous Time Random Walk: A Simple Test for Subdiffusive Dynamics (2009)

Hilfer

Threefold Introuduction to Fractional Derivatives (2008)

Metzler, Jae-Hyung, Cherstvy, Barkai

Anomalous Diffusion Models and their Properties: Non-Stationarity, Non-Ergodicity, and Ageing at the Centenary of Single Particle Tracking (2014)

SpaceForward
Right, Down, Page DownNext slide
Left, Up, Page UpPrevious slide
POpen presenter console
HToggle this help